

Efficient Gbit/s Data Transceivers Designed for Verification and SoC Integration

Bill Ellersick Analog Circuit Works

Copyright 2013 Analog Circuit Works Proprietary

Introduction

Secure embedded systems: trusted design

- HPEC -> Tbit/s between chips on wires/fibers
- SERDES Research: tens of Gbit/s/link
- Practical electrical interfaces: 3-10 Gbit/s/link
 - Sweet spot for circuit complexity, power, area
 - Advances in packaging: highly parallel links
 - Power and area per Gbit/s can trump Gbit/s/link

Mature SERDES Architecture

Proven transceiver design

0

- Design optimized over 5 successful tapeouts
- Focus: cost, robustness, time-to-market
- Based on 16 Gbit/s 0.25um link: 69mW/Gbit/s, 3mm²

Performance scales w/process, 2mW/Gbit/s, .02mm²

-60

- Simple linear equalization, fits under SERDES pads

60

Outline

- Introduction
- Complex 16 Gbit/s SERDES
- Simple, practical SERDES architecture
 - Coding/Scrambling, Clock Recovery
 - Equalization
 - Standards
- Real value behavioral models
- Integration into SoCs
- Conclusion

16 Gbit/s in 0.25um: inductive tuning

Bond wire inductors for low Q

 \mathcal{M}

- Time interleaved transceivers
 - Parallelism, needs calibration
- Extreme limits of Gbit/s/link
- 4-PAM to lower symbol rate
- Simpler: 2-PAM, lower Gbit/s
 More parallel wires

Link Architecture

- Links constructed from mixed-signal blocks
 PLL, Tx, Rx, Timing Recovery
- Synthesized logic for coding, upper layers
- Double termination: high BW, small reflections

Coding/Scrambling

- Embedded clocks for high data rates
- Low overhead coding: edges, DC balance
 - Prevent long series of zeros or ones
 - Self-synchronizing scramblers (per SONET)
 - 8B10B or 32B34B (complicates clock dividers)

Clock Recovery

- Digital clock recovery: predictable, scalable
 - Robust phase synthesizers adjust clock phases
 - Digital state machines align clocks to rx data
 - Compensates for phase, small freq. differences

Clock Generation and Retiming

- One PLL
 - Generates clocks for multiple SERDES
 - Filters out high frequency jitter (eases shielding)
 - Duty cycle correcting clock buffers
- Retiming flip-flops in SERDES eases timing

Copyright 2013 Analog Circuit Works Proprietary

9

Equalization

- Linear equalization preferred (Tx equ. shown below)
 - Emphasizes high frequency edges
 - Easily verified eye openings, good until near Gbit/s limit
 - Slightly larger signal swings vs. DFE (lower SNR)
 - Coefficients fixed (adapted if application allows)
- Unrolled DFE^[1] complex and power-hungry
- Real-time DFE hard to port, power-hungry

Lean SERDES vs. Standards

- One Configurable PHY for multiple standards – JESD, PCIe, XAUI, Thunderbolt, 10GbE, USB3.0
 - Upper layers in synthesizable macros
- Internal system links: lean protocol stack
 - Simple coding or scrambling
 - Provides framing and edges for clock recovery

Real Portable Models

- Accurate models of SERDES for SoC design
- EDA tools now widely support Verilog standards
- Real Portable Methodology
 - Portable across processes and tools
 - Rapid discrete-time real-valued behavioral simulation
 - Time honored approach: commonly used in e.g. Matlab
 - Verification of model vs. transistor-level design
 - Enhanced productivity, portable, reusable
- Can develop IP with one set of tools
 - Integrate into SoC with another set of tools
 - Benefits IP providers, users, tool providers

Real Portable Methodology Flow

SERDES Integration into SoCs

- Chip and board layout guidelines
 - Identify victim and aggressor signals
 - Drives floorplanning and routing
- Placement of SERDES near power/data pads

 Noisy supply pads dictate substrate current
- Shielding or twisted differential signals
- Controlled impedance packaging, connectors
- Review by experienced SERDES designers

Conclusions

- First silicon success is paramount in SoCs

 SERDES a fraction of power/area/design effort
- Keep it simple
 - Reuse and port building blocks
 - Optimize to sweet spot of process and application
 - Minimize cost, reduce time-to-market
 - Allows HPC with robust, efficient SERDES
- Verification, integration methods minimize risk
- Boutique process, secure embedded systems
 Trusted, proven SERDES blocks not available

References

- [1] Ellersick, W., et al, "A Serial-Link Transceiver Based on 8-GSample/s A/D and D/A Converters in 0.25-mm CMOS", ISSCC 2001.
- [2] Ellersick, W., "Real Portable Models for System/Verilog/A/AMS", Cadence CDN Live Conference, October 2010

9/12/2013